Year 2021 Fall Semester Computational Theory Qualifying Exam (100 points)

1. Convert the NFA shown in Fig. 1 into an equivalent DFA step by step. (10\%)
2. Reduce the DFA shown in Fig. 2 into a DFA with the minimum number of states. (10\%)
3. Prove that language L is NOT context free by using the closure properties and pumping theory of context free language. $L=\left\{w_{1} w_{2}\right\}, w_{1} \in(a \mid b)^{*}, w_{2} \in(b \mid c)^{*}$ and the numbers of ' a ', ' b ' and ' c ' are $\#(a)=n, \#(b)=n+1$, and $\#(c)=n+2, n>0$. (15%)
4. Design a push down automata (PDA) to decide the following language: $L=\left\{(a \mid b)^{n} c^{n}(a \mid b)^{2 n}\right\}$. (1) Define the PDA, (2) Is your PDA deterministic? Explain it. (A DPDA has exact one transition to perform at each step.) (10\%)
5. Design a deterministic Turing machine (DTM) to accept the following language by using machine schema: $L=\left\{w c w c w \mid w \in\{a\}^{*}, \Sigma=\{a, b, c\}\right\}$. Please, explain your DTM briefly. (10\%)
6. Define the following function by using basic functions: $\{a d d(x, y) \equiv x+y, \operatorname{sub}(x, y) \equiv x-y$, is_zero $(x):: i f(x==0) 1$ else 0$\}$, function composition, and minimalization:
$f(x, y)=\frac{\log _{2} x}{\log _{2} y}, x, y \in Z^{+}$and $x, y \geq 2 . \quad(10 \%)$
7. Prove that the following problem is undecidable by reducing the halting (or non-halting) problem into it: Given a Turing machine M_{1}, will M_{1} halt on all strings of a recursively enumerable language L_{2}. (10\%)
8. Prove that the following problem is NP-complete: $G=\{V, E\}$ is a graph and V and E are the sets of the vertices and edges. Is there a path starting at vertex v_{1}, ending at vertex v_{2} and containing k distinct vertices? (Reducing the Hamilton cycle problem into this problem.) (15\%)
9. Prove that the following problem is NP-hard: There is a polynomial defined as follows:

$$
P(x, y, z)=\sum_{i=0}^{n-1} x^{s_{i}} y^{t_{i}} z^{r_{i}}, s_{i}+t_{i}+r_{i}=3,0 \leq s_{i}, t_{i}, r_{i} \leq 3, n, s_{i}, t_{i}, r_{i} \in Z^{+} . \text {Does }
$$

$P(x, y, z)$ have any integer roots? (Reducing the 3-SAT problem into this one.) (10\%)

Fig. 1, NFA of Problem 1

Fig. 2, DFA of Problem 2.

