Algorithms

CSE PhD Qualifying Exam
January 2022

1. (20%) Please answer the following questions.
(a) Show that any binary tree of height h has at most 2^{h} leaves.
(b) Illustrate the operation of Max-HEAP-Insert $(A, 3)$ on the heap $A=\langle 16,14,11,10,12,8,7,4,5,6,2,1\rangle$.
2. (20%) Illustrate the operation of the following sorting algorithms respectively on the array $A=$ $\langle 7,5,6,4,0,3,9,6,9,3,6\rangle$, where $A[j] \in\{0,1, \ldots, 9\}$ for $1 \leq j \leq 11$. Which of them are stable sorting algorithms? Which of them are in-place sorting algorithms?
(a) Insertion Sort
(b) Counting Sort
3. (20%) A subsequence is a sequence that can be derived from another sequence by deleting some elements. Given two sequences $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$, the longest common subsequence problem is to find a maximum-length common subsequence of X and Y.
(a) Find an LCS of $\langle D, C, B, A, D, B, A\rangle$ and $\langle B, A, C, D, A, B\rangle$.
(b) Describe an algorithm that solves the longest common subsequence problem in $O(m n)$ time.
4. (20\%) Finding a missing number. An array of n elements contains all but one of the integers from 1 to $n+1$.
(a) Give the best algorithm you can for determining which number is missing if the array is sorted, and analyze its asymptotic worst-case running time.
(b) Give the best algorithm you can for determining which number is missing if the array is "not" sorted, and analyze its asymptotic worst-case running time.
5. (20\%) Polynomial-Time Reductions:
(a) Describe the 3-SAT Problem.
(b) Describe the Independent Set Problem.
(c) Suppose that 3-SAT Problem is NP-complete, then prove Independent Set is also NPcomplete.
Hint:
G

