2:
X

= ¥
;Lél'

W

-

Bl

i&\;
(S“"

ALAZS A1 -3

A W i B

i
)
.

K

g

s/

3

101 255 % —

A8 A
B : 2013/01/17

1. (25%) Asymptotic notation: for computational complexity analysis, we define an asymptotic

upper bound of a given function g(n), denoted by O(g(n)), to be a set of functions

O(g(n)) = {f(n) : there exist positive constants ¢ and ng such that 0 < f(n) < c- g(n)

(a)

for all n > ng}.

(5%) Similarly, we can define an asymptotic lower bound of a given function g(n),
denoted by (g(n)), to be a set of functions 2(g(n)).
Please complete the definition of Q(g(n)) with the format similar to the definition of O(g(n))

mentioned above.

(5%) Also, an asymptotic exact bound of a given function g(n), denoted by ©(g(n)), is
a set of function which is an asymptotic upper and lower bound of a given function
g(n) at same time. Please give a formal definition of asymptotic exact bound O(g(n))

with the format similar to the definition of O(g(n)) mentioned above.

(10%) Give asymptotic upper and lower bounds for 7'(n) in each of the following recurrences.
Assume that 7'(n) is constant for n < 2. Make your bounds as tight as possible, and justify

your answers.
i. (5%) T(n) =2T(n/2) + n*.
ii. (5%) T'(n) = T(7n/10) + n.

(5%) Suppose given a problem P to solve, and there are two algorithms, Algo-A and Algo-B,
available to solve the problem. Algo-A is with complexity of O(n) and Algo-B is O(nlogn).
Will Algo-A always solve the problem faster than Algo-B for all possible problem instances
of P? Why or Why not?

2. (25%) Dynamic programming and greedy-algorithm: knapsack problem.

The knapsack problem is a problem in combinatorial optimization: Given a set of items z1, zo, . . .,

Ty, each item x; is with a weight w; and a value v;. The objective of the problem is to determine

which items should be included in a collection so that the total weight is less than or equal to a

given limit W and the total value is as large as possible.

Two versions of the Knapsack problem can be defined: fractional Knapsack problem and binary

Knapsack problem. For binary knapsack problem, we assume each item is not dividable. That

is, if an item is selected than it should be taken wholly. In contrast, for fraction Knapsack

problem, it is allowed to take any portion of an item. The weight (value) of the fractional item

is proportion to the weight (value) of the original one.



(a) Fractional Knapsack problem.

i. (4%) Show that the fractional knapsack problem can be solved by greedy-choice prop-
erty.
ii. (4%) Provide a pseudo code to solve the fractional knapsack problem.

iii. (2%) What is the complexity of your proposed algorithm.

(b) (15%) The binary knapsack problem is far more complicate to solve in term of complexity,
comparing with fractional version. A similar dynamic programming solution for the O-
1 knapsack problem runs in pseudo-polynomial time, if proper setting as follows.
Assume wy, wa, ..., wy, W are strictly positive integers. Define m[i, w] to be the maximum
value that can be attained with weight less than or equal to w using items up to i. We can

define m[i, w] recursively as follows:

[
o mfi,w| =
e mfi,w] = ml[i — 1,w], if w; > w (the new item is more than the current weight limit).
e mfi,w] = max(m[i — 1,w],m[i — 1,w — w;] + v;) if w; < w.

KNAPSACK(n, w)

1 > assume wli](v[i]) is weight (value) of item z;

2 if (n=0o0r W =0)

3 then return 0

4 if (wn] > W)

5 then return KNAPSACK(n — 1, w)

6 else return max(KNAPSACK(n —1,w), KNAPSACK(n — 1,W — w(n]) + v[n])

i. (5%) Please find the time complexity of Procedure KNAPSACK. (hint: for worst cast
analysis, we may assume that W is large enough to cover most of the objects)

ii. (7%) From (i), you might find that the time complexity is high. The problem can be
solved by rewriting the procedure with a non-recursive version of the algorithm. Please
give the non-recursive of the Procedure KNAPSACK (4%), and find the time complexity
of your code. (3%)

iii. (3%) Please explain why we can use dynamic programming strategy to solve this prob-

lem.

3. (10%) Please describe briefly the following sorting algorithms along with their time complexities.
Which of them are stable sorting algorithms? Which of them are in-place sorting algorithms?

(a) Quicksort
(b) Heapsort

4. (15%) Describe the Floyd-Warshall algorithm that, given an n x n matrix W representing
the edge weights of an n-vertex directed graph G = (V| E), solves the all-pairs shortest-paths
problem in ©(n?) time.



5. (10%) Show that the subtree size of the root node in an n-element heap is at most 2n/3.

6. (15%) Describe an O(n)-time algorithm that, given a set S of n distinct numbers and a positive

integer k < n, determines the k numbers in S that are closest to the median of S.



