1. (a) Convert the following NFA into a DFA. (b) Then convert the resulted DFA into a DFA with the minimum number of states. (15\%)

2. Language $L=\left\{a^{n} b a^{n} \mid n>0\right\}$. Prove that this language is not regular by using (15\%)
a , Pumping theorem of regular language.
b , MyHill-Nerode theorem.
3. Please complete the following problems: (15\%)
a , Design a Deterministic Push-Down Automata (DPDA) to accept the following language: $\mathbf{L}=\left\{\mathbf{a}^{\mathrm{n}} \mathbf{b a}{ }^{2 \mathrm{n}} \mid \mathrm{n}>0\right\}$. Please verify the correctness of your DPDA by giving explanation of the algorithm and an example. (Reminder: your PDA must be deterministic.)
b , Write down the Context Free Grammar (CFG) of the language L.
c , Is L un-ambiguous? Please verify it.
4. Prove that the following language is not context free by using the Pumping theory and closure properties of context free language: $\Sigma=\{a, b, c\}$, $\mathbf{L}=\{\mathbf{w} \mid \#(\mathbf{a})=\#(\mathbf{c})<\#(\mathbf{b})\}$. That is the numbers of ' a ' and ' c ' in \mathbf{w} are equal. But the number of ' b ' is greater. (10\%)
5. Define the following functions by using basic functions, function composition, recursive definition and minimalization. Assume the following basic functions have been defined: (15\%)
$\operatorname{add}(x, y) \equiv x+y, \operatorname{mul}(x, y) \equiv x * y, \operatorname{sub}(x, y) \equiv x-y, \operatorname{div}(x, y) \equiv x / y, n e q(x, y) \equiv x \neq y$.
a , $\mathrm{e}(\mathrm{x}, \mathrm{n}) \equiv \sum_{i=0}^{n} \frac{x_{i}^{i}}{i!}$
b , $\log (a, b, x) \equiv \log _{a} \log _{b}(x)$
c - factor $(x, y) \equiv 1$, if x is a factor of y,
0 , otherwise.
6. Prove that the following problem is unsolvable by using problem reduction. (Please use the unsolvable problems listed in the textbook for the reduction step.)
The problem: Given a Turing machine \boldsymbol{M} and a string x with the length $|\mathrm{x}|<k$, where k is a positive integer, will \boldsymbol{M} halt on \boldsymbol{x} ? (The input string contains at least one character.) (15\%)
7. It is well-known that the 2-Patition problem is NP-hard, prove that the following 3 -partition problem is NP-complete: (15\%)
The 3-partition problem: Given a set $\boldsymbol{A}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right\}$ of non-negative integers, can we divide \boldsymbol{A} into three subsets $\boldsymbol{A}_{\mathbf{1}}, \boldsymbol{A}_{\mathbf{2}}$, and $\boldsymbol{A}_{\mathbf{3}}$ such that the summation of the integers in each subset is equal to $\left(\sum_{i=1}^{n} x_{i}\right) / 3$? $\left(\left|\left|\mathbf{A}_{\mathbf{1}}\right|\right|=\left|\left|\mathbf{A}_{\mathbf{2}}\right|\right|=\left|\left|\mathbf{A}_{\mathbf{3}}\right|\right|\right.$.)
The 2-Partition problem: Given a set $S=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{n}\right\}$ of non-negative integers. K is an integer and $K=\left(\sum_{i=1}^{n} a_{i}\right) / 2$. Is there a subset $P=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ of S such that $\sum_{j=1}^{m} c_{j}=K$?
