1．$(28 \%=7 * 4 \%)$ Compare each pair of terms by giving full descriptions for them：
（a）Upper bound vs．supremum
（b）Complete graph vs．bipartite graph
（c） $0 / 1$ vs．continuous Knapsack problems
（d）Hamiltonian cycle vs．Euler cycle
（e）Simple path vs．simple cycle
（f）Adjacency matrix vs．isomorphic graphs
（g）Tree vs．heap
2．$(20 \%=2+2+2+6+2+2+4 \%)$ What is the worst－case time of quicksort？In what situation will it happen？What technique can be applied to avoid always selecting bad partition elements？Show that the expected run time of quicksort is $\Theta(n \lg n)$ with the above technique．What is a stable sort？Give a simple example to show that quicksort is not a stable sort．Show how the quicksort algorithm sorts the following array（in nondecreasing order）

$$
75,6,24,27,15,8,99,72,23,8,57,62,19
$$

3．（ 20% ）Compare the techniques of divide－and－conquer and dynamic programming in details．Give examples to demonstrate or support your arguments．
4．$(10 \%=6+4 \%)$ Suppose our character set is $\{A, B, C, D, E, F\}$ and each character appears in the file the number of times indicated in Table 1.
（a）Construct the Huffman coding tree．
（b）Encode the strings＂DEAF＂and＂BECAD＂．
5．$(22 \%=14+8 \%)$ Trace Floyd＇s algorithm to find the weight of the shortest path of each pair of vertices for the graph of Figure 1．Show all $A^{(i)}$ and the next matrices． Trace the Finding－a－Shortest－Path algorithm with the next matrix to give the path of each pair of vertices．The two algorithms are given in the next page．

Character	A	B	C	D	E	F
Frequency	16	5	12	17	10	25

Table 1

Figure 1

