國立台灣海洋大學資訊工程學系博士班

 98學年度第二學期博士班資格考命題卷（筆試）

 98學年度第二學期博士班資格考命題卷（筆試）}

科目：演算法
命題教授：林清池老師
日期：2010／06／25

1．(20%) Please briefly describe the following standard terms and techniques which are commonly used in algorithm designs．
（a）Approximation Algorithm
（b）NP－Completeness
（c）Master Method
（d）Greedy Method

2．(15%) For a given function $g(n)$ ，we denote by $O(g(n))$ the set of functions

$$
\begin{aligned}
O(g(n))=\{ & f(n) \mid \text { there exist positive constants } c \text { and } n_{0} \text { such that } \\
& \left.0 \leq f(n) \leq c g(n) \text { for all } n \geq n_{0}\right\} .
\end{aligned}
$$

（a）Show that $n^{2}-9 n=O\left(n^{2}\right)$ ．
（b）Please show that if $f(n)=a_{m} n^{m}+\ldots+a_{1} n+a_{0}$ ，then $f(n)=O\left(n^{m}\right)$ ．

3．(15%) A recurrence is an equation or inequality that describes a function in terms of its value on small inputs．
（a）Use a recursion tree to determine a good asymptotic upper bound on the recurrence $T(n)=5 T(\lfloor n / 5\rfloor)+n$ ．
（b）Use the substitution method to verify your answer in（a）．

4．（15\％）Suppose you are given two sets A and B ，each containing n positive integers．You can choose to reorder each set however you like．After reordering，let a_{i} be the i th element of set A ， and let b_{i} be the i th element of set B ．You then receive a payoff of $\prod_{i=1}^{n} a_{i}^{b_{i}}$ ．
（a）Give an algorithm that will maximize your payoff．
（b）Prove that your algorithm maximizes the payoff，and state its running time．
5. (15%) Please describe briefly the following sorting algorithms along with their time complexities.
(a) Heapsort
(b) Quick sort
(c) Counting sort
6. (20%) A subsequence is a sequence that can be derived from another sequence by deleting some elements. Given two sequences $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$, the longest common subsequence problem is to find a maximum-length common subsequence of X and Y.
(a) Find an LCS of $\langle A, B, C, B, D, A, B\rangle$ and $\langle B, D, C, A, B, A\rangle$.
(b) Describe an algorithm that solves the longest common subsequence problem in $O(m n)$ time.

