Qualifying Examination, Computational Theory, 2010

1. Convert the following NFA into an equivalent DFA: (10%)

2. Minimize the following DFA: (10%)

Minimize the DFA.

- 3. L={ $a^{n}b^{m}c^{k}$, a+k = m}, Prove that L is context free by: (15 %)
 - a Giving the context free grammar of L.
 - b Designing a Pushdown Automata for L.
 - c > Is L a Deterministic Context Free Language? Verify your answer, please.
- 4. L={ $a^{n}b^{m}c^{k}$, m>n and m>k}. Please prove that L is not context free by using the Pumping theorem. (10 %)
- 5. L_1 is decidable by some deterministic Turing machine. Prove that L_2 is also decidable by some Turing machine: (Remember that Turing machines = algorithms. Don't hesitate to design an algorithm to solve this problem.)

a
$$L_2 = \{w | w^R \text{ is a string of } L_1\}.$$
 (15 %)

- 6. It is known that the following problem is unsolvable:
 {Given a Turing machine M, will M halt on all strings of an alphabet Σ ?}
 Prove the following problem is also unsolvable by using problem reduction:
 - a Given two machines M₁ and M₂, M₁ decides the language L₁, and M₂ decides the language L₂. Is L₁ a subset of L₂ ? (15 %)

- 7. Prove that the following problem is NP-complete by reducing the 3 SAT problem to this problem.: (15 %)
 - a Given a graph G=(V,E) and an integer K, is there a Hamiltonian cycle of K vertices.
- 8. Prove that the following problem is in both the co-NP and the EXP-classes:
 - a \sim M₁ and M₂ are two NFA. Is M₁ = M₂ ? (10%)