Probability Theory

1. Prove: (a) $\bigcap_{n=1}^{\infty}\left(\frac{1}{3}-\frac{1}{3 n}, \frac{1}{3}+\frac{1}{3 n}\right)=\left\{\frac{1}{3}\right\}(6 \%)$
(b) Using (a) to explain that $\mathrm{P}\left\{\frac{1}{3}\right\}=0$ (i. e. Suppose that we select a random point from the interval $(0,1)$, try to explain the probability of selecting the point $\frac{1}{3}$ is zero. (Hint: $\left.\lim _{n \rightarrow \infty} P\left(E_{n}\right)=P\left(\lim _{n \rightarrow \infty} E_{n}\right)\right)(10 \%)$
2.(a) Write down the formula of Law of Total Probability(6\%)
(b) Using (a) to explain: suppose that seven coins, of which exactly three are gold, are distributed among seven persons, one each, at random, and one by one. Are the chances of getting a gold coin equal for all participants? (10\%)
2. A certain basketball player makes a foul shot with probability 0.61 . Determine for what value of k the possibility of k baskets in 12 shots is maximum, and find this maximum probability. (10\%)
3. Mr. Chen owns two appliance stores. In store 1 the number of TV sets sold by a salesperson is, on average, 9 per week with a standard deviation of five. In store 2 the number of TV sets sold by a salesperson is, on average, 8 with a standard deviation of four. Mr. Chen has a position open for a person to sell TV sets. There are two applicants. Mr. Chen asked one of them to work in store 1 and the other in store 2, each for one week. Both of the salesperson in store 1 and 2 sold 7 sets. Based on this information, which person should Mr. Chen hire? Please explain: (10\%)
4. Let the joint probability density function of random variables X and Y be given by

$$
f(x, y)=\left\{\begin{array}{c}
\frac{1}{2} y e^{-x}, \text { if } x>0,0<y<2 \\
0, \text { otherwise }
\end{array}\right.
$$

Find the marginal probability density functions of X and Y. (12\%)
6. A man invites his fiancee to an elegant hotel for a Sunday brunch. They decide to meet in the lobby of the hotel between 11:20 A.M. and 12 noon. If they arrive at random times during this period, what is the probability that the first to arrive has to wait at least 10 minutes? (10\%)
7. Customers arrive at a post office at a Poisson rate of four per minute. What is the probability that the next customer does not arrive during the next 1 minutes? (10\%)
8. (a) Give the statement of the Central Limit Theorem. (6\%)
(b) Using (a) to solve: If 20 random numbers are selected independently from the interval $(0,1)$, what is the approximate probability that the sum of these numbers is at least eight? (10%) (Hint: a. $\sqrt{20} \approx 4.472, \sqrt{12} \approx 3.464$, b. check the table on the next page)

Table 2 Area under the Standard Normal Distribution to the Left of z_{0} : Positive z_{0}

$\Phi\left(z_{0}\right)=P\left(Z \leq z_{0}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{z_{0}} e^{-x^{2} / 2} d x$										
z_{0}	0	1	2	3	4	5	6	7	8	9
. 0	. 5000	. 5040	. 5080	. 5120	. 5160	. 5199	. 5239	. 5279	. 5319	. 5359
. 1	. 5398	. 5438	. 5478	. 5517	. 5557	. 5596	. 5636	. 5675	. 5714	. 5753
. 2	. 5793	. 5832	. 5871	. 5910	. 5948	. 5987	. 6026	. 6064	. 6103	. 6141
. 3	. 6179	. 6217	. 6255	. 6293	. 6331	. 6368	. 6406	. 6443	. 6480	. 6517
. 4	. 6554	. 6591	. 6628	. 6664	. 6700	. 6736	. 6772	. 6808	. 6844	. 6879
. 5	. 6915	. 6950	. 6985	. 7019	. 7054	. 7088	. 7123	. 7157	. 7190	. 7224
. 6	. 7257	. 7291	. 7324	. 7357	. 7389	. 7422	. 7454	. 7486	. 7517	. 7549
. 7	. 7580	. 7611	. 7642	. 7673	. 7703	. 7734	. 7764	. 7794	. 7823	. 7852
. 8	. 7881	. 7910	. 7939	. 7967	. 7995	. 8023	. 8051	. 8078	. 8106	. 8133
. 9	. 8159	. 8186	. 8212	. 8238	. 8264	. 8289	. 8315	. 8340	. 8365	. 8389
1.0	. 8413	. 8438	. 8461	. 8485	. 8508	. 8531	. 8554	. 8577	. 8599	. 8621
1.1	. 8643	. 8665	. 8686	. 8708	. 8729	. 8749	. 8770	. 8790	. 8810	. 8830
1.2	. 8849	. 8869	. 8888	. 8907	. 8925	. 8944	. 8962	. 8980	. 8997	. 9015
1.3	. 9032	. 9049	. 9066	. 9082	. 9099	. 9115	. 9131	. 9147	. 9162	. 9177
1.4	. 9192	. 9207	. 9222	. 9236	. 9251	. 9265	. 9279	. 9292	. 9306	. 9319
1.5	. 9332	. 9345	. 9357	. 9370	. 9382	. 9394	. 9406	. 9418	. 9429	. 9441
1.6	. 9452	. 9463	. 9474	. 9484	. 9495	. 9505	. 9515	. 9525	. 9535	. 9545
1.7	. 9554	. 9564	. 9573	. 9582	. 9591	. 9599	. 9608	. 9616	. 9625	. 9633
1.8	. 9641	. 9649	. 9656	. 9664	. 9671	. 9678	. 9686	. 9693	. 9699	. 9706
1.9	. 9713	. 9719	. 9726	. 9732	. 9738	. 9744	. 9750	. 9756	. 9761	. 9767
2.0	. 9772	. 9778	. 9783	. 9788	. 9793	. 9798	. 9803	. 9808	. 9812	. 9817
2.1	. 9821	. 9826	. 9830	. 9834	. 9838	. 9842	. 9846	. 9850	. 9854	. 9857
2.2	. 9861	. 9864	. 9868	. 9871	. 9875	. 9878	. 9881	. 9884	. 9887	. 9890
2.3	. 9893	. 9896	. 9898	. 9901	. 9904	. 9906	. 9909	. 9911	. 9913	. 9916
2.4	. 9918	. 9920	. 9922	. 9925	. 9927	. 9929	. 9931	. 9932	. 9934	. 9936
2.5	. 9938	. 9940	. 9941	. 9943	. 9945	. 9946	. 9948	. 9949	. 9951	. 9952
2.6	. 9953	. 9955	. 9956	. 9957	. 9959	. 9960	. 9961	. 9962	. 9963	. 9964
2.7	. 9965	. 9966	. 9967	. 9968	. 9969	. 9970	. 9971	. 9972	. 9973	. 9974
2.8	. 9974	. 9975	. 9976	. 9977	. 9977	. 9978	. 9979	. 9979	. 9980	. 9981
2.9	. 9981	. 9982	. 9982	. 9983	. 9984	. 9984	. 9985	. 9985	. 9986	. 9986
3.0	. 9987	. 9987	. 9987	. 9988	. 9988	. 9889	. 9889	. 9889	. 9990	. 9990
3.1	. 9990	. 9991	. 9991	. 9991	. 9992	. 9992	. 9992	. 9992	. 9993	. 9993
3.2	. 9993	. 9993	. 9994	. 9994	. 9994	. 9994	. 9994	. 9995	. 9995	. 9995
3.3	. 9995	. 9995	. 9995	. 9996	. 9996	. 9996	. 9996	. 9996	. 9996	. 9997
3.4	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9997	. 9998
3.5	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998	. 9998
3.6	. 9998	. 9998	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999
3.7	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999
3.8	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999	. 9999

Discrete Mathematics

CSE PhD Qualifying Exam
July 2022

1. (20%) Let $G=(V, E)$ be a connected graph and $|V|=n$. What are the minimum values of $|E|$ so that G can be constructed, respectively, as
(a) a complete bipartite graph;
(b) a cycle of length 8;
(c) a spanning tree; and
(d) a regular graph?
2. (10%) Use strong induction to show every positive integer n can be written as sum of distinct powers of two, that is, as a sum of a subset of integers $2^{0}=1,2^{1}=2,2^{2}=4$ and so on.
Hint: for the inductive step, separately consider the case where $k+1$ is even and where it is odd. When it is even, note that $(k+1) / 2$ is an integer.
3. (10%) Let $A=\{1,2,3,4,5\} \times\{1,2,3,4,5\}$, and define a binary relation \mathcal{R} on A as follows: $\left(x_{1}, y_{1}\right) \mathcal{R}\left(x_{2}, y_{2}\right)$ if and only if $x_{1}+y_{1}=x_{2}+y_{2}$.
(a) Verify that \mathcal{R} is an equivalence relation.
(b) Find the equivalence class that includes.
4. (10%) A positive rational number can be expressed as p / q, where p and q are two positive integers with $\operatorname{gcd}(p, q)=1$. Prove that $3^{1 / 2}$ is not a rational number.
