Algorithms

CSE PhD Qualifying Exam
January 2023

1. (20%) Illustrate the operation of the following sorting algorithms respectively on the array $A=$ $\langle 8,4,7,4,0,3,9,6,9,3,5\rangle$, where $A[j] \in\{0,1, \ldots, 9\}$ for $1 \leq j \leq 11$. Which of them are stable sorting algorithms? Which of them are in-place sorting algorithms?
(a) Merge sort
(b) Quicksort
2. (20%) Illustrate the progresses of BFS and DFS, respectively, starting from vertex 4 on the following graph.

(a)

(b)
3. (20%) Suppose you are given two sets A and B, each containing n positive integers. You can choose to reorder each set however you like. After reordering, let a_{i} be the i th element of set A, and let b_{i} be the i th element of set B. You then receive a payoff of $\prod_{i=1}^{n} a_{i}^{b_{i}}$.
(a) Give an algorithm that will maximize your payoff.
(b) Prove that your algorithm maximizes the payoff, and state its running time.
4. (20%) Give an algorithm for determining if a graph is two-colorable, i.e. if it is possible to color every vertex red or blue so that no two vertices of the same color have an edge between them. Your algorithm should run in time $O(n+m)$, where n is the number of vertices and m is the number of edges in the graph. You should assume that the graph is undirected and that the input is presented in adjacency-list form.
5. (20%) Polynomial-Time Reductions:

In the DOMINATING SET problem, we are given an undirected graph $G=(V, E)$ with n vertices and a number $k(1 \leq k \leq n)$. A vertex u dominates itself and all of its neighbors. That is, vertex u dominates vertex v if $v=u$ or v is adjacent to u. A set S of the vertices is called a dominating set if every vertex $v \in V$ is dominated by at least one vertex $u \in S$. DOMINATING SET problem asks you to check whether there is a dominating set of size k in graph G. It is well-known that DOMINATING SET is an NP-complete problem.

In this problem, we consider a variant called DOUBLE DOMINATING SET. The input is an undirected graph $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$ with n^{\prime} vertices, and a number $k^{\prime}\left(1 \leq k^{\prime} \leq n^{\prime}\right)$. A set $S^{\prime} \subset V^{\prime}$ is called a double dominating set, if every vertex $v \in V^{\prime}$ is dominated by at least two vertices in S^{\prime}.

Example: For the graph on the left, vertex $\{1\}$ is a dominating set of size 1 ; vertices $\{2,4\}$ form a dominating set of size 2 . However, neither $\{1\}$ nor $\{2,4\}$ is a double dominating set. The set $\{1,3\}$ is a double dominating set of size 2 .
(a) To show DOUBLE DOMINATING SET is NP-hard based on the fact that DOMINATING SET is NP-complete, what is the correct direction of reduction?
(Please answer in the form A to B)
(b) Prove that DOUBLE DOMINATING SET is in NP.
(c) Do a reduction (related to the DOMINATING SET problem) to show DOUBLE DOMINATING SET is NP-hard.
Hint: The intended solution only creates 2 extra vertices in the new instance.

